

4-Channel Power Meter LMG450

Universal Meter for Motors, Power Electronics and Energy Analysis

The four-channel LMG450 power meter is another advanced product from ZES ZIMMER LMG series of precision power meters, tried and tested and with great acceptance in the market. It is designed as a universal meter for the entire field of power electronics and network analysis. It can be used in practically all power electronics applications, in development and test systems, in quality assurance and maintenance. It is fully frequency inverter compatible. Of course, it can also be used for measurements in motors, transformers, conventional and switched power supply units. It is also suitable for mains analysis measurements.

Easy operation thanks to colour graphics display and hotkeys for important measured values Various value tables can be called on the colour graphics display at the press of a key, either with six values in large letters, which can also be read at a glance from a greater distance, with twelve values or with up to 40 values e.g. in range setting or in harmonics table. The graphics display allows scope and plot functions for waveform and timing diagrams, as well as xy diagrams or bar charts for the harmonics. The status bar at the top of each display menu shows the input level of the four voltage and the four current inputs – an important item of information for the quality of the measurement.

The display also indicates what groups, A and B, the input channels are switched to and which signals the groups are synchronised to.

Sense/More

<u>Manual</u> 1.0000

25.0 V 60.0 V

130 U

250 U

Auto

1.0000

600 mA 1.20 A

2.50 A

5.00 A

Extend

Vec.A

ŏ

₽' 8/M

8 Scale

€ Set

Chn

≁ Adapt

0

ቍ Chn.

<mark>-A-</mark> ≁Signl

d9

c1

off

●Move
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■

 ■

♥ Split

Status bar

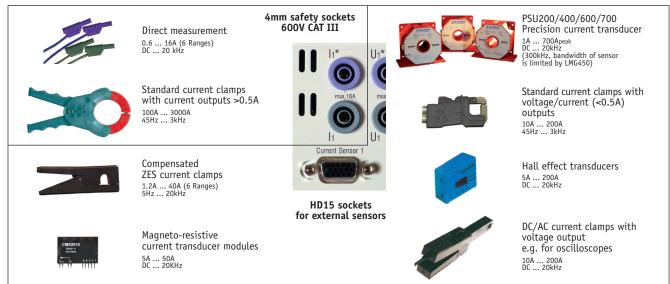
Group B ©Chns A Group oup Chn1 A:1 Itrms Manual 1.0000 Manual 1.0000 <u>Manual</u> 1.0000 0.1701 A Iac 25.0 U 60.0 U 25.0 U 25.0 V 60.0 V Idc 60.0 V 130 V litems Sum ^ل 130 U 130 U Uac 250 U 250 U 250 U lide Disp ل Auto Auto Auto S Q PF F 1.0000 1.0000 1.0000 600 mA 1.20 A 2.50 A 600 mA 1.20 A 2.50 A 600 mA 1.20 A 48.525 Hz 2.50 A 5.00 A 5.00 A 5.00 A Channel 1 with 11 measuring values Range setting and scaling U4 0 🕢 Scp.A Plot +¹ Graph 🔊 Scp.A Scp.B Extend Signl **Р**\$4 200.0 €Zoom 1.5 Graphs Move A:0:4 win B: 134 '≁ Split C:PI4 on Dioff 0.0004 s xz=1.0 x/div=10.00 ms Scope function for waveform of sampling values Plot function of calculated values

Measurement inputs

The direct measurement inputs for voltage and current have a very wide dynamic range: Eight voltage ranges from 6V to 600V, and six ranges for current from 0.6A to 16A. A further voltage input (six ranges from 0.12V to 4V), designed for isolating current sensors, extends the current measuring range almost indefinitely. With the help of the special current clamps supplied by ZES ZIMMER and designed

for the LMG450, current can be measured during running operations, without interrupting the current path.

LMG450 – rear view


Compensated current clamp Part No. L45-Z06

A special current measuring device is the compensated current clamp by ZES ZIMMER. It features electronic compensation of amplitude and delay errors. Even at low current levels of 1A to 40A, measurement is exact in the frequency range from 5Hz to 20kHz. Due to its high dynamic common-mode rejection, this current clamp is also very suitable for carrying out measurements at the frequency inverter output.

Compensated current clamp L45-Z06

Various methods of applying current to be measured

4 independent power measuring channels

The current and voltage paths of the four power measuring channels are all isolated from each other and from earth. This allows a high degree of measuring freedom in many different power measurement applications.

The adjacent table shows various types of wirings for grouped and individual measurement channels. The table also assigns application examples for the respective types of wiring. Power measurement channels 1 and 4 can each be synchronised to their input signals (fundamental waves etc.) independent of each other. Channels 1 and 4 are then the synchronisation references for the other channels contained in groups A and B.

This is a very useful method for carrying out efficiency measurements for equipment where the input and output have different frequencies, for example a 3-phase frequency inverter with single-phase mains supply.

	3Ø 3W (Aron) 1Ø 2W					
Device	Measured Value	Ch 1	Ch 2	Ch 3	Ch 4	Appropriate setting of wiring
4Ø motors	Power of all windings	Phase 1	Phase 2	Phase 3	Phase 4	4+0
High power batterie chargers (3Ø -> DC)	Input and output power, efficiency	Phase 1	Phase 2	Phase 3	DC-Out	3+1 (U∆ I* -> U* I*)
Rectifier section of inverters (3Ø -> DC)	Input power, rectifier efficiency	Phase 1	Phase 2	Phase 3	DC-Bus	3+1 (U∆ I* -> U* I*)
Output section of inverters (DC -> 3Ø)	Output power, chopper efficiency	AC-Out 1	AC-Out 2	AC-Out 3	B DC-Bus	3+1 (U∆ I* -> U∆ I∆)
1Ø -> 3Ø inverter Low power motor drives	Input and output power, efficiency	AC-Out 1	AC-Out 2	AC-Out 3	B Phase 1	3+1 (U∆ I* -> U* I*)
Power supplies with multiple outputs	Input and output power, efficiency	DC-Out 1	DC-Out 2	DC-Out 3	B Phase 1	3 +1
1Ø Transformers with multiple output windings	Input and output power, efficiency	AC-Out 1	AC-Out 2	AC-Out 3	AC-In	3+1
3Ø laods with auxiliary supplies	Complete input power	Phase 1	Phase 2	Phase 3	Aux. AC or DC	3+1 (U∆ I* -> U∆ I∆)
3Ø -> 3Ø inverter High power motor drives	Input and output power, efficiency	AC-In 1	AC-In 2	AC-Out 3	AC-Out 2	2+2 (U∆ I* -> U∆ I∆)
3Ø -> 1Ø AC power source	Input-, output- and DC-Bus power, efficiency	AC-In 1	AC-In 2	DC-Bus	AC-Out	2+2 (U∆ I* -> U* I*)

Ch 1

1Ø 2W

3Ø 3W

3Ø 3W (Aron)

Ch 2

1Ø 2W

3Ø 4W

4Ø 4W

Ch 3

4Ø 5W

1Ø 2W

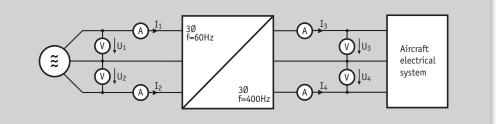
4Ø 4W

Ch 4

1Ø 2W

1Ø 2W

3Ø 3W (Aron)


Wiring settings in () are featured by option "Star-Delta Conversion"

Group A

Group B

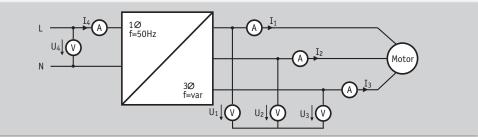
Measurement on two systems with different frequencies

In wiring A:1+2 B:3+4, the ARON circuit is two times used. The block diagram shows that only one LMG450 is needed for complete measurement. Generally frequency converters for speed variable drives or frequency conversion have no neutral on input or output.

60Hz -> 400Hz

The following block diagram applies wiring A:1+2+3 B:4 and is typical for a low power speed

variable drive. This example is used to explain the settings and displays of the LMG450. The screenshots were made with the free software BMP2PC from ZES ZIMMER.


Group B

i9nal

6

∂Mod

Norm

⊙Globals

U.I

50Hz -> f=variable

- 1 Setting of global parameters, e.g. wiring (see table at previous page)
- 2 Configuration of measuring inputs and sychronisation source for group A
- 3 Configuration of measuring inputs and synchronisation source (same as picture 2, but for group B)
- 4 Measuring ranges, autorange or manual, setting of scaling factors for external CT's or VT's (group A)
- 5 Measuring ranges, autorange or manual, setting of scaling factors for external CT's or VT's (group B)
- 6 Display of different plugged external current sensor devices from ZES ZIMMER, here the bottom one is in use (enabled)

Globals	Group A Group B	8 Cycl.
Oleronarz	агоир на агоир в	≑ Aver
Cycle/s	0.50	
Average	1	⊽Wire
Wiring	A: 1+2+3 B: 4	
Aron	A: 1+2+3+4	(inco
	A: 1+2+3 B: 4 A: 1+2 B: 3+4	
	3+1, U*I*->U∆I∆	
	3+1, U∆I*->U∆I∆	
	-3+1, U∆I*->U*I*	,

		154 s Normali 1011/08 111213 81 4	<u> </u>	
			™Mode	6
)Globals	Group A	Group B	Norm	
Line Extn	(<u></u>	9na1 Svnc		
				3

	⁾¹ U1 □ 1 20 □ 1 30	nia de Unia de C	H50s Normal Co HCGIVE H: 1+2+3 B: 4	1 (
6)Group A	Group B	Sense/More	
			Manual 1.0000 25.0 V 60.0 V 130 V 250 V	
			Auto 1.0000 <u>600 mA</u> 1.20 A 2.50 A 5.00 A	5

Line Extn	
	2

Group A

Group	<mark>A G</mark> ro	oup B	Sense/More	
Manual	Manual	Manual		
1.0000	1.0000	1.0000		
25.0 V	25.0 V	25.0 V		
60.0 V	60.0 V	60.0 V		
130 V	130 V	130 V		
250 U	250 U	250 U		
			.	
Auto	Auto	Auto		
1.0000	1.0000	1.0000		
600 mA	600 mA	600 mA		
1.20 A	1.20 A	1.20 A		
2.50 A	2.50 A	2.50 A		
5.00 A	5.00 A	5.00 A		

U1 U1 U1 U1 U1 10 III 1 20 III 1 30 III		16 s Normal Lo Hotive 1+2+3 B: 4	1
OGroup A	Group B	Sense/More	
ZES comp. A #00310105			
ZES comp. A #00220104			
No Clamp De	etected		
ZES Halltra #00020102			
			6

- 7 Scope of power (yellow), current (red) and voltage (green) of the frequency converter single phase input
- 8 Scope display of the low pass filtered 3Ø output, the chopper frequency is no more contained because of being outside the filtered range
- 9 Large display with six important values of the frequency converter input, measured in group B
- 10 Phase values and summing values of the frequency converter 3Ø output gives a quick overview (group A)
- 11 Efficiency, slip, speed and other interesting values calculated by user defined formulas
- 12 The formula editor provides the individual calculations shown in picture 11
- 13 Vector display of 3Ø systems immediately checks the phase sequence and shows phase interchanges
- 14 Plot display works like a strip chart recorder and can plot all measured or formula calculated values
- 15 Harmonic analysis conform to CE standards (precompliance tests)
- 16 Frequency spectrum for current, voltage (as bar chart), with CE-limits, linear or logarithmic

0.0021A

9.9995 A

Wave: 5

€Log

16

'20

'10

'30

All necessary functions in the basic device:

- Printer interface
- RS232 interface
- Formula editor
- Harmonics analysis for
- CE pre-compliance

All necessary functions are included in the basic device at reasonable price.

01234567 ABCDEFGHacos() #3bcdefghasin() #3bcdefghasin()

getting m freeze()

(Uhigh==Eln()

Ulow=Rnglsin()

(Uhigh<Utrms)

Uhion=Utrms;

(Ulow>Utrms)

formulae, functions and logical conditions

Ulow=Utrms;

li f

if

Printer and RS232 interfaces, formula editor, harmonics analysis of current and voltage

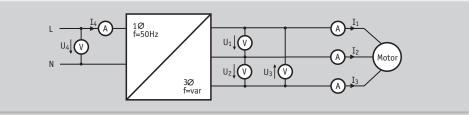
ŶŢ

New Line

≁ Mode

46

+^J End


for pre-compliance tests in accordance with EN61000-3-2.

Program example for the monitoring of overvoltage and undervoltage

Options

- Star-Delta Conversion Part No. L45-06

50Hz -> f=variable, instrument for motor measurement in I* U Δ wiring

^.;:<=>()[], OPQRSTUVWXYZ opqrstuvwxyz

alues

Formula editor: the window shows the available mathematical

For detailed test and evaluation of 3Ø motors the electrical quantities for each winding phase is needed. In some cases you have access to the motor terminal block with start and end of all three windings. Then you can measure all what you need. But in most cases the motor has only three terminals and the internal star point or the delta winding as to measure its current is not accessible. Also far away from the motor you have only the three wires. With the option star-delta conversion you have the capability to calculate the not accessible values (e.g. voltages, currents, power, harmonics). This intelligent solution with an additional DSP works well at all waveforms and every unbalance of mains and load. Simply connect the voltage paths in delta and click the current clamps around the wires. Select the internal connection of your load and press the "Link" softkey.

Group A	Group B	🖻 🖓 🗖
Link123 (U1,11) A:5 Itrms 0.1711) Utrms 106.48 P 16.28 W Q 8.18 va S 18.22 V	A 0.1671 A U 106.37 U J 15.97 W Ir 7.80 var	PLink P11 ₽Sum
Link123 (U3,I3) A:7 Itrms 0.1700 Utrms 106.35 P 16.29 W Q 7.83 va S 18.07 V	A 0.2934 A U 184.29 U I 48.54 W I 23.81 var	⁴ Disp Many

6 Group	A	Group B	Թնիլ
Itrms	(U12,I12) A:5 97.21 mA 184.15 U 16.82 W 7.99 var 17.98 VA	Link123 (U23,I23) A:6 96.67 mA 184.18 U 16.84 W 7.72 var 17.88 UA	GLir All 4'Sur
Link123 Itrms Utrms P Q S		Sum(5-7) A:13 169,13 mA 318,96 U 48,41 W 23,88 var 53,95 VA	f≠Dis <mark>mans</mark>

Calculation of the real values in the star connected winding phases (wiring: 3+1, $U\Delta I^* \rightarrow U^* I^*$)

Calculation of the real values in the delta connected winding phases (wiring: 3+1, $U\Delta I^* \rightarrow U\Delta I\Delta$)

Further options:

IEEE488 interface

(Part No. L45-01) Interpretation of the complete SCPI, as well as the LMG450 specific command set. The data transfer yields up to 1Mbyte/sec.

Disk or memory card

(Part No. L45-02F or L45-02) The two memory media, disk or memory card, can be used as required. They serve to record measured and sampled values and to save and recall device settings (setups).

Flicker meter

(Part No. L45-04) Compliant to EN61000-4-15. The evaluation of the voltage fluctuations by currents up to 16A compliant to EN61000-3-3, by currents up to 75A compliant to EN61000-3-11.

Process signal interfaces, digital and analog inputs and outputs

(Part No. L45-03) To monitor further process magnitudes like revolution, torque etc. With assistance of the formula editor efficiency and other magnitudes can be deduced and be applied as control parameters.

Harmonics up to 99th from U, I and P (Part No. L45-08)

The harmonics up to 99th option can be used to analyse current, voltage and power related to the fundamental ranging from 1Hz to 1.2kHz. It is possible to detect interharmonics by a selectable division factor giving a new fundamental as reference.

Transients

(Part No. L45-05) The transients option detects peaks and dips up to a resolution of 20µsec, scanning taking place at 50kHz.

Torque determination

(Part No. L45-016) Precision Power Meter Series LMG calculates torque and speed of three-phase asynchronous motors from motor current and voltage without torque measuring shaft.

Dimensioning of insulation for all standard low voltages

The measurement inputs are dimensioned for 600V/CAT III, with option L45-015 up to 1000V. This makes it possible to measure in all standard 3-phase low voltage networks. The adjacent table shows that the voltage "Line to Neutral/ Earth" is always less than 600V.

3 Phase/	3 Phase/	Line to Line	Line to
4 Wire	3 Wire	Voltage	Neutral/Earth
66/115V		115V	66V
	120V	120V	69V
120/208V		208V	120V
	240V	240V	139V
230/400V		400V	230V
277/480V		480V	277V
	500V	500V	289V
400/690V		690V	400V
	1000V	1000V	578V

Technical Data

Voltage measuring ranges Nominal value /V	6 12.5 25	60	130	250	400	600		
Maximum trms value /V	7.2 14.4 30	60 100	130	270		720		
Iaximum peak value for full scale /V verload capability	12.5 25 50 1500V for 1s	100	200	400	800	1600		
nput impedance	1MΩ, 20pF							
urrent measuring ranges								
ominal value /A Iaximum trms value /A	0.6 1.2 2.5 1.3 2.6 5.2	5 10	10 18	16 18				
laximum peak value for full scale /A	1.875 3.75 7.5	15	30	60				
Overload capability	18A permanent, 50A fo	r 1s, 150A for 2	Oms					
nput impedance	2mΩ						مراجعه الملاحد	COOV/CAT
solation	All direct current and v	oltage inputs of	power measurin	g channels aga	inst each oth	er and against e	arth isolated, m	ax. 600V/CAL
/oltage measuring ranges for external solated current transduceers								
lominal value /V	0.12 0.25 0.5	1	2	4				
laximum trms value /V	0.15 0.3 0.6	1.2	2.5	5				
Maximum peak value for full scale /V Overload capability	0.25 0.5 1 250V for 1s	2	4	8				
nput impedance	100kΩ, 10pF							
leasuring range selection	Automatic, manual or 1	emotely control	led					
leasuring accuracy				± (%	of measuring va	alue + % of measuri	ing range)	
	Measuring accuracy		DC	1Hz1kHz	4565	Iz, AC-Coupling	1kHz5kHz	5kHz20kHz
	Voltage		0.2+0.2	0.1+0.1	0	.05+0.05	0.2+0.2	0.3+0.4
	Current (direct)		0.4+0.4	0.15+0.1	0	.05+0.05	0.2+0.2	0.5+0.5
	Active power (direct)		0.5+0.5	0.2+0.1	0	.07+0.08	0.3+0.2	0.6+0.5
	Current (via ext. current tra	insducer)	0.2+0.2	0.1+0.1	0	.05+0.05	0.2+0.2	0.3+0.4
	Active power (via ext. curre	ent transducer)	0.3+0.3	0.15+0.1	0	.07+0.08	0.3+0.2	0.6+0.5
Other values	 ambient temperatu warm up time 1h All other values are de functional relationship 	rived from the cu	5. calibrat urrent, voltage a	tion interval 12	2 month	a 1, (λ=Power fa		nd on the
Synchronization	functional relationship (e.g. $S = I * U$, $\Delta S/S = \Delta I/I + \Delta U/U$) The measurement is synchronized on the signals period. There is a choice to determine the period from u(t), i(t), p(t), further $u^2(t)$, $i^2(t)$ by using a settable filter. By this very stable readings are achieved, even at signals of pulse width modulated frequency inverter and amplitude modulated electronic ballast, synchronization also with external signal or "Line"							
			By this very stat	ole readings are				
cope function		amplitude modu	By this very stat	ole readings are ballast, synch				
•	frequency inverter and	amplitude modu on of sampled va	By this very stat Ilated electronic Ilues over the ti	ole readings are ballast, synch me				
lot function	frequency inverter and Graphical representation	amplitude modu on of sampled va four readings, mi	By this very stat ulated electronic lues over the ti inimal resolutio	ole readings are c ballast, synch me n 50ms	nronization al	so with external	signal or "Line	<i>u</i>
Plot function Harmonic analysis prCE Harm	frequency inverter and Graphical representatio Time diagram of max.	amplitude modu on of sampled va four readings, mi nd voltage accor ltage and power nge from 1Hz to	By this very stat alated electronic lues over the ti inimal resolutio ding to EN6100 up to 99 th harm	ole readings are c ballast, synch me n 50ms 0-4-7 with eva nonics (max. 10	nronization al: Iluation accor DkHz), in tota	so with external ding to EN61000 l 100 harmonics	l signal or "Line 0-3-2 (Pre-comp s, when includir	" liance) g DC part.
lot function larmonic analysis prCE Harm larmonic analysis Harm100	frequency inverter and Graphical representatio Time diagram of max. I Measuring of current a Analysis of current, vo Fundamental in the rar	amplitude modu on of sampled va four readings, mi nd voltage accor ltage and power 1ge from 1Hz to onics.	By this very stat ulated electronic lues over the ti inimal resolutio ding to EN6100 up to 99 th harn 1.2kHz. By sele	ole readings are ballast, synch me n 50ms 0-4-7 with eva nonics (max. 10 ctable integer	nronization al uluation accor DkHz), in tota divider (15	ding to EN6100 l 100 harmonics) a new referer	l signal or "Line 0-3-2 (Pre-comp s, when includir	" liance) g DC part.
lot function larmonic analysis prCE Harm larmonic analysis Harm100 licker measuring	frequency inverter and Graphical representatio Time diagram of max. I Measuring of current a Analysis of current, vo Fundamental in the rar as to detect interharm	amplitude modu on of sampled va four readings, mi nd voltage accor ltage and power rge from 1Hz to onics. I to EN61000-4-2 displaying of trai	By this very stat ulated electronic lues over the ti inimal resolutio ding to EN6100 up to 99 th harn 1.2kHz. By sele 15 with evaluationsients with a m	ole readings are c ballast, synch me n 50ms 0-4-7 with eva nonics (max. 10 ctable integer ion according t esolution of 20	nronization al uluation accor DkHz), in tota divider (150 co EN61000-3- Dµs. Storing d	ding to EN61000 l 100 harmonics D) a new referer 3 epth is 1.4 Milli	0-3-2 (Pre-comp s, when includir nce fundamental	" Iliance) g DC part. can be create
lot function larmonic analysis prCE Harm larmonic analysis Harm100 licker measuring ransients – monitoring and storing	frequency inverter and Graphical representation Time diagram of max. It Measuring of current a Analysis of current, vo Fundamental in the rar as to detect interharm Flicker Meter according Storing and graphical of selectable recording du Interfaces: RS232 and	amplitude modu on of sampled va four readings, min nd voltage accor ltage and power rge from 1Hz to onics. to EN61000-4-2 displaying of trai rration from 0.05 IEEE488.2 , only	By this very stat ulated electronic lues over the ti inimal resolutio ding to EN6100 up to 99 th harn 1.2kHz. By sele 15 with evaluati nsients with a n 5 to 60 seconds y one interface	ole readings are c ballast, synch me n 50ms 0-4-7 with eva nonics (max. 1(ctable integer ion according t esolution of 2C . Adjustable pr can be used at	Iluation accor OkHz), in tota divider (150 to EN61000-3- Dµs. Storing d e-trigger, diff : the same tin	ding to EN61000 l 100 harmonics D) a new referer 3 epth is 1.4 Milli erent possibiliti	0-3-2 (Pre-comp s, when includir nce fundamental	" Iliance) g DC part. can be create
Iot function Iarmonic analysis prCE Harm Iarmonic analysis Harm100 Ilicker measuring ransients – monitoring and storing Computer interfaces	frequency inverter and Graphical representation Time diagram of max. It Measuring of current a Analysis of current, vo Fundamental in the rar as to detect interharm Flicker Meter according Storing and graphical of selectable recording du Interfaces: RS232 and All functions can be re	amplitude modu on of sampled va four readings, mi nd voltage accor ltage and power rge from 1Hz to onics. I to EN61000-4-1 displaying of trai iration from 0.09 IEEE488.2 , only mote controlled,	By this very stat ulated electronic lues over the ti inimal resolutio rding to EN6100 up to 99 th harn 1.2kHz. By sele 15 with evaluation sients with a m 5 to 60 seconds y one interface keyboard lock	ole readings are c ballast, synch me n 50ms 0-4-7 with eva ronics (max. 10 ctable integer ion according t esolution of 20 . Adjustable pr can be used at for measuring	nronization al uluation accor DkHz), in tota divider (150 to EN61000-3- Dµs. Storing d e-trigger, diff the same tim parameters av	ding to EN61000 l 100 harmonics D) a new referer 3 epth is 1.4 Milli erent possibiliti ne ailable	0-3-2 (Pre-comp s, when includir nce fundamental	" Iliance) g DC part. can be create
Iot function Iarmonic analysis prCE Harm Iarmonic analysis Harm100 licker measuring ransients – monitoring and storing omputer interfaces Iemote control Iutput data	frequency inverter and Graphical representation Time diagram of max. It Measuring of current a Analysis of current, vo Fundamental in the rar as to detect interharm Flicker Meter according Storing and graphical of selectable recording du Interfaces: RS232 and	amplitude modu on of sampled va four readings, mi nd voltage accor ltage and power oge from 1Hz to onics. I to EN61000-4-1 displaying of trai uration from 0.09 IEEE488.2 , only mote controlled, data, data forma	By this very stat ulated electronic lues over the ti inimal resolutio ding to EN6100 up to 99 th harm 1.2kHz. By sele 15 with evaluati nsients with a n 5 to 60 seconds y one interface keyboard lock its equal for all	ole readings are c ballast, synch me n 50ms 0-4-7 with eva nonics (max. 10 ctable integer ion according t esolution of 2C . Adjustable pr can be used at for measuring interface types	nronization al uluation accor DkHz), in tota divider (150 to EN61000-3- Dµs. Storing d e-trigger, diff the same tim parameters av	ding to EN61000 l 100 harmonics D) a new referer 3 epth is 1.4 Milli erent possibiliti ne ailable	0-3-2 (Pre-comp s, when includir nce fundamental	" liance) g DC part. can be create
Scope function Plot function Harmonic analysis prCE Harm Harmonic analysis Harm100 Flicker measuring Flicker measuring Flicker interfaces Remote control Dutput data Fransfer rate Printer interface	frequency inverter and Graphical representatio Time diagram of max. I Measuring of current a Analysis of current, vo Fundamental in the rar as to detect interharm Flicker Meter according Storing and graphical of selectable recording du Interfaces: RS232 and All functions can be re Output of all readable	amplitude modu on of sampled va four readings, mi nd voltage accor ltage and power rge from 1Hz to onics. I to EN61000-4-1 displaying of trai iration from 0.09 IEEE488.2 , only mote controlled, data, data forma rud, IEEE488.2: r	By this very statulated electronic lues over the ti- inimal resolutio ding to EN6100 up to 99 th harm 1.2kHz. By sele 15 with evaluati nsients with a ri 5 to 60 seconds y one interface keyboard lock its equal for all max. 1MByte/se	ole readings are c ballast, synch me n 50ms 0-4-7 with eva nonics (max. 10 ctable integer ion according t esolution of 2C . Adjustable pr can be used at for measuring interface types c	nronization al uluation accor DkHz), in tota divider (150 to EN61000-3- Dus. Storing d e-trigger, diff the same tim parameters av s, SCPI comma	ding to EN61000 l 100 harmonics D) a new referer 3 epth is 1.4 Milli erent possibiliti ne ailable ind set	0-3-2 (Pre-comp s, when includir nce fundamental ions sample valu	" g DC part. can be create es/channel,

Other data Display Dimensions

Part No. L45-Z06 (1 pc.) L45-Z07 (Set of 4 pc.)

Weight Protection class Electromagnetic compatibility Protection system Operating/storage temperature Climatic class Power supply

LMG450 accessories ZES ZIMMER compensated current clamps

Nominal value /A Permissible trms value /A Permissible peak value for full scale /A Overload capability Max. cord diameter Isolation

0...40°C, -20...50°C KYG in accordance to DIN40040 85...264V, 47...440Hz, about 45W 5 40 1.25 2.5 10 20 5.0 10 40 20 80 3.75 7.5 30 60 120 15

EN61010 (IEC1010, VDE0411), protection class I, overvoltage category III

STN colour display, 320 x 240 pixel, 5,7" - Bench case, W 320mm x H 147mm x D 307mm

- 19"-chassis, 84PU, 3HU, D 307mm

IP20 in accordance to DIN40050

about 6,5kg

2.5

12mm

500A for 1s

300V/CATIII, 600V/CATII

EN50081, EN50082

Measuring accuracy of clamp	Current: \pm (% of measuring value + % of measuring range) / Phase: degrees							
	1Hz10Hz	10Hz45Hz	45Hz1kHz	1kHz5kHz	5kHz20kHz	20kHz50kHz		
Current	1.5+0.25	0.4+0.15	0.15+0.05	0.3+0.15	1.0+0.25	4.0+0.5		
Phase	6	3	0.5	2	6	20		

Hall current sensors for range extension

	5			
Part No.	Current nominal	trms	peak	Supply
L45-Z28-Hall50	35A	50A	70A	Internally
L45-Z28-Hall100	60A	100A	120A	by LMG450
L45-Z28-Hall200	120A	200A	240A	via HD15
L45-Z29-Hall300	250A	300A	500A	Externally e.g. with
L45-Z29-Hall500	400A	500A	800A	ZES power supply for
L45-Z29-Hall1000	600A	1000A	1200A	up to four sensors
L45-Z29-Hall2000	1000A	2000A	2100A	Part No. SSU-4

Current transducers with Hall effect sensors for range extension of LMG450, DC...20kHz, accuracy class 0,5 connected to LMG450 via HD15 sensor input, incorporated EEPROM for scaling and adjustment data as well as data for automatically setting of appropriate current range

Power supply unit for up to 4 Sensors Part No. SSU-4	Power supply unit for up to 4 Sensors for L45-Z29 and PSU-600 series, device fitting under LMG450/95, design equal to NDL5 (see below)
Adapter for 3-phase measurements Part No. LMG-MAK3	 CEE-Plug, 5 pins, 16A, 2m supply cord CEE-Socket, 5 pins, 16A, for EUT Socket for supplying the meter LMG450 4mm safety sockets, measuring access to current and voltage Safety acc. IEC61010: 300V/CATIII

Longtime Data Logging NDL5 Part No. NDL5

Longtime-data logging to harddisk for LMG450/LMG95 Communication via Internet/Ethernet, even when recording

LMG450 application software					
Product name (Part No.)					
LVDRV-L45					

LVDRV-L45	Driver for LMG450 under LAB-View 5.1.1 for RS232 as well as IEEE488 interface, with programming samples
LWINDRV-L45	Driver for LMG450 under LAB Widows/CVI for RS232 as well as IEEE488 interface, with programming samples
LMGControl	Individual configuration of measurement using all features of the LMG450, spectral analysis, remote of LMG450. Storage in MS Excel format possible
BMP2PC	Bitmap transfer from LMG450/LMG95 to PC via RS232, downloaded screens can be processed and scaled in Windows. Free download from the website www.zes.com

Subject to technical changes, especially to improve the product, at any time without prior notification.

ZES ZIMMER Electronic Systems GmbH Tabaksmühlenweg 30, D-61440 Oberursel/Ts. Tel. ++49 6171 628750 Fax ++49 6171 52086 http://www.zes.com e-mail: sales@zes.com